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Final Report

Algebraic Multigrid and the Fast Adaptive Composite Grid
Method in Large Scale Caputation

Progress of this project is categorized into the two areas described

below.

I. A1m. he first area is devoted to study of algebraic multigrid

(AM) (cf. (1)- (8)).
Conventional or geouetric multigrid algorithms depend on knowledge

of the umderlying geometry for a given problem (e.g., a partial differential
equation). This knowledge is used to predetermine coarser grids and the atten-

dant operators and intergrid transfers. Although very efficient solvers can
be developed in this way, the dissemination and use of geometric mltigrid have
been impeded by the need to tailor the algorithm to each application. A fairly
generaI2 black box-solver based on multigrid principles would be useful in

overcminig these difficulties. 1in fact, AM is such a scheme that has many
advantages over other solvers (cf. (7)) for treating many cmplex and irregular

problems (cf. the introductions to (1) and (2)). .

For certain classes of matrices (e.g., symmetric positive-type), the

project has astablished AMS as an effect "black box" solver: the research has
shown (2) that point Gauss-Seidel for such matrices achieves (algebraic)

smoothness in the sense that the errors after just a few sweeps are "locally
constant"; that is, variables that are strongly cou led via large off-diagnal
matrix entries must have similar errors. The coarsening process may therefore

use a Ritz-type variational formulation in an attept to approximate such
errors; that is, it is enoug to determine an interpolation process that ensures
that such errors are approximately in the range of interpolation. Such an
approxinmation property mst be achieved while maintaining low coxplexity of the
resulting coarse-level problems; this can generally be accooplished by an
"operator" interpolation scherm that uses the matrix to determine the interpola-

tion coefficients. More critically, the coarse grid variables themselves are

chosen automtically in this s&eme so that they properly represent the
"strength" of the fine grid equations. Loosely speaking, each fine grid
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variable that is not rexrved for the coarse grid mist have only strong
couplings to variables that either are themselves reserved for the coarse

grid or are strongly coupled to variables that are. The neans for implementing
this "coarsening" process are quite intricate, but the objectives that guide

it are fairly straightforward. Moreover, sha;p convergence rates were proved

in this and in rmre general cases, including block positive-type matrices such

as those that arise from discretizing Stokes equations (cf. (2)).
The main difficulty inapplying X-1G to new classes of matrices is one

of determining the sense of snoothness (of relaxed errors) for these classes.

This sense is usecf as a basis for the coarsening process to determine strong

cou;lings and for interpolation to determine how to "collapse" the operator
(i.e., how to ignore couplings between strictly fine grid points so that a fine
grid variable is determined purely by coarse grid ones). Automatic ways for ompu-

tationally detecting the sense of snothness that use preliminary relaxation

sweeps were one of the central focuses of the project.

The project studied AMG applied to a wide variety of essentially posi- 7
tive-type problems, including anisotropic and ill-behaved diffusion equations
as well certain nonsynuetric problems, especially convection dtdmnated diffu-

sion equations (5), (6), and same purely algebraic problem that arise in geodesy
(1). And it has just recently been established for many problems in strutural

mechanics and fluid flows. (14). Yet there is a need to continue mnch of the

present efforts to extend AMG to a broader class of problem, applications and

machines, and to develop software. There are currently many ideas in each of
these directions - they are in fact quite abundant - and the study devoted
effort to most of them. The project was impelled by inportant application

areas where AMG sees nost needed. This included, for exwple, finite-elment
and boundary-eleaent discretizations in strutural analysis and aerodynamics

(the main topics of study), moving grid applications in reaction-diffusion
modeling, and many adaptive discretizations applications.

II. FAC. IThe second project area was the study of FAC in the context

of nultiprooessor crputer systems. FAC is developed for elliptic equations .
in (9) - (11), which include various descriptions of basic and nore sophisti-

cated FAC schefes. Its application to advanced omputers is documented in

(12) - (13).
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There is a clear need for local resolution in many physical
Phenomena. For example, when special local features of the forcing function,
boundary, or coefficients of an elliptic boundary value problem dictate dis-
cretization error characteristics that are substantially different than the
global features of the problem, it is important that the discretization acount
for this locally. The presence of, say, a point source should not demand a fine
mesh throughout the region. Yet this objective of adapting to local phermna
is often in conflict with the process designed to solve the discrete system.
Many linear solvers degrade significantly in the presence of different discreti-
zation scales and discrete "interfaces". In fact, even the discretization
process itself can be adversely affected by this objective: for finite differences,

it is problematic to develop sound difference formilae and data structures to
handle nonuniform grids; for finite elements, this objective is reflected in
the substantial overhead costs in automating the discretization.

It is, therefore, irportant to develop mesh refinement techniques that
are both efficient as well as systematic. Many existing mesh refinrent

methods (especially those that are adaptive) are systematic but troubled by slow.
or expensive solvers; many others (especially LAT-type schemes (16, (17)) are

efficient but can be scmwhat ad hoc. FAC attwpts to drwa fzm the best of
both approaches.

The need for high local resolution is demanding nt only better
numerical methods, but more advanced ompiting system as well. Present and
future computational requirents are beyond the reach of expected computer
technological advancements and must therefore be addressed by advanced archi-
tectures. This is especially true for problems that require high local resolu-
tion becmme one of the basic tenets here is that this is often well beyond
present machine capabilities. Parallel architectures appear to be very natural --
responses to such omVputational derrands, especially in conjunction with FAC
since it partitions the local computations into separate independent processes.

The cmbination of FAC and advanced parallel system can provide a very
effective tool for solving a wide variety of large scale arputational models.

The recent progress of the project on linear FPC is dcumiented in
detail in (12) attached. To summarize, the results include a fairly complete

theoretical treatmnt of convergence and its rates for elliptic problems; a
theoretical treatment for the case where the coarse grid operator and/or the

fine grid operator are replaced by approdximate solvers; a discussion of how to
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construct acoeptable c=posite grid operators; nurerical results for two types

of elliptic problems, a discussion of other topics such as removal of singular-

ities and multilevel FAE; results on the application of FAC to the HEP; cwt-

plexity analysis of FAK for multiprocessor system (the first of its kind);

and a theoretical and practical developent of POEf, a new and efficient FAC

method for eigenvalue problems.
R1(f (13) is a fully variational nultigrid-like method for solving

differential eigenvalue problems. It has been successfully applied to model

problems and to the difficult single group neutron diffusion problem at LANM

in cooperation with Joel Dendy. Initial efforts were made to implement an

efficient FAC version of IUMG (which has been done on nodel problems only, but

with great success) and to extend these codes to multigroup problems.

Stephen F. McCormick, Ph.D.
Principal Investigator
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